Classifier Cascade for Minimizing Feature Evaluation Cost

Minmin Chen, Zhixiang (Eddie) Xu, Kilian Q. Weinberger, Olivier Chapelle, Dor Kedem
Machine Learning for Real-World Applications
Learning with Test-Time Budget

- Test efficiency
- Speed
- Precision

- Features varying in cost
- Millions/billions of executions per day
- Milliseconds per test

Minmin Chen, Zhixiang (Eddie) Xu, Kilian Weinberger, Olivier Chapelle, Dor Kedem

Classifier Cascade for Minimizing Feature Evaluation Cost
Showcase Application: Web Search Ranking
Gradient Boosted Regression Tree (GBRT)

- All 8 winners out of the 1,055 teams used GBRT or its variants

![Graphical representation of GBRT trees with test cost and precision at 5 relevant documents in top 5 returns]

[Friedman, 2001; Chapelle and Chang, 2011]
Research Goal

Keep the precision, reduce the test cost.

Post processing classifiers

Precision@5

Test cost

faster
Setup

\[D = \{(x_1, y_1), (x_1, y_1), \cdots, (x_1, y_1)\} \in \mathcal{R}^d \times \{0, 1, 2, 3, 4\} \]

1 unit \(\approx 0.1 \) microsecond
Test Cost of an Ensemble

\[H \]

\[\alpha = 0.05 \]
Feature Evaluation Costs

\[c = 1 + 5 + 20 + 1 + 20 + 1 + 5 + 0 \]

A feature becomes free after it is computed for the first time

Evaluation cost

Feature cost
Feature Evaluation Costs

\[H \]

\[\alpha = 0.05 \]

\[c = 52 \]

\[e = 1 \]

\[\alpha = 0.05 \]

\[c = 326 \]

\[e = 1 \]

\[\alpha = 0.05 \]

\[c = 0 \]

\[e = 1 \]

Minmin Chen, Zhixiang (Eddie) Xu, Kilian Weinberger, Olivier Chapelle, Dor Kedem

Classifier Cascade for Minimizing Feature Evaluation Cost
Solution 1: single stage sparse solution

Re-weight the weak classifiers of the ensemble to allow some classifiers to be removed
Single Stage Sparse Solution

\[H' \]

\[\alpha_1 = 0.05 \]
\[\alpha_2 = 0.05 \]
\[\alpha_3 = 0.052 \]
\[\alpha_t = 0.05 \]
\[\beta \rho = 0.0505 \]
\[\alpha_2 = 0.05 \]
Single Stage Sparse Solution

\[\mathcal{H}' \]

\[\beta_1 = 0.1 \]
\[\beta_2 = 0 \]
\[\beta_3 = 0.02 \]
\[\beta = 0.08 \]
\[\beta_{T-1} = 0.05 \]
\[\beta_T = 0 \]

\[\mathbf{x}_i \]

\[\text{Loss} \]
\[\frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{t=1}^{T} \beta_t h_t(x_i) - y_i \right)^2 \]

\[\text{Exact cost} \]
\[\sum_{t=1}^{T} e_t \delta(\beta_t \neq 0) \]
\[\sum_{t=1}^{d} \delta \left(\sum_{t=1}^{T} F_{\alpha,t} \delta(\beta_t \neq 0) \right) \]

\[\text{Approximated cost} \]
\[\sum_{t=1}^{T} e_t |\beta_t| \]
\[\sum_{t=1}^{T} c_\alpha \sum_{t=1}^{T} F_{\alpha,t} \beta_t^2 \]

Non-continuous 0-1 function

Minmin Chen, Zhixiang (Eddie) Xu, Killian Weinberger, Olivier Chapelle, Dor Kedem

Classifier Cascade for Minimizing Feature Evaluation Cost

Sunday, April 22, 12
Single Stage Sparse Solution

Loss
\[
\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{t=1}^{T} \beta_t h_t(x_i) - y_i \right)^2
\]

Evaluation cost
\[
\sum_{t=1}^{T} e_t |\beta_t|
\]

Feature cost
\[
\sum_{t=1}^{T} c_\alpha \sqrt{\sum_{t=1}^{T} F_{\alpha t} \beta_t^2}
\]

Reg.
\[
\rho |\beta|
\]

Non-differentiable

Variational method
(Boyd and Vandenberghe, 2004; Chapelle and Keerthi, 2004)

\[
\min_{\beta} \sqrt{g(\beta)} = \min_{\beta, \sigma > 0} \frac{1}{2} \left[\frac{g(\beta)}{\sigma} + \sigma \right]
\]

\[
\sigma^* = \sqrt{g(\beta)}
\]
Single Stage Sparse Solution

\[
\min_{\beta, \sigma, \gamma} \frac{1}{2n} (H\beta - Y)^2 + \frac{1}{2} \left[\beta^\top \Sigma \beta + \sum_t (\lambda e_t + \rho) \sigma_t \right] + \frac{1}{2} \left[\beta^\top \Gamma \beta + \sum_\alpha \lambda c_\alpha \eta_\alpha \right]
\]

- Loss
- Evaluation cost + Reg.
- Feature cost

Alternating optimization

- fix σ, γ
- fix β

\[\sigma^* = \sqrt{g(\beta)}\]

jointly convex

exact !

- Fast training: 5,000 weak classifiers, 150,000 inputs, 13 seconds
Experimental results

Can we do better?

- Some expensive features are required to achieve high precision
- The dataset is highly class-skewed (most documents are irrelevant)
Solution 2: Cascade classifiers

Classify

easy inputs with cheap features

and

difficult inputs with expensive features.
Classifier Cascade [Viola and Jones, 2002]
Classifier Cascade

[Viola and Jones, 2002]

early exit

$\mathcal{H}_1(x) < \theta_1$
Classifier Cascade [Viola and Jones, 2002]

\[\mathcal{H} \]

\[\mathcal{H}_1 \]

\[\mathcal{H}_2 \]

- early exit \(\mathcal{H}_1(x) < \theta_1 \)
- early exit \(\mathcal{H}_2(x) < \theta_2 \)

Minmin Chen, Zhixiang (Eddie) Xu, Kilian Weinberger, Olivier Chapelle, Dor Kedem
Classifier Cascade [Viola and Jones, 2002]

\mathcal{H}

\mathcal{H}_1

early exit
$\mathcal{H}_1(x) < \theta_1$

\mathcal{H}_2

early exit
$\mathcal{H}_2(x) < \theta_2$

\mathcal{H}_K

early exit

Minmin Chen, Zhixiang (Eddie) Xu, Kilian Weinberger, Olivier Chapelle, Dor Kedem
How to order the trees? **Greedy? (cheap trees first)**

Joint optimization on the ordering and the weights

[How to order the trees? Greedy? (cheap trees first)]

Joint optimization on the ordering and the weights

[Dundar et al. 2007; Raykar et. al, 2010]

myopic!

Minmin Chen, Zhixiang (Eddie) Xu, Kilian Weinberger, Olivier Chapelle, Dor Kedem

Classifier Cascade for Minimizing Feature Evaluation Cost

Sunday, April 22, 12
Joint Loss of the Cascade

Loss

\[
\frac{1}{2n} \sum_{k=1}^{K} \sum_{i=1}^{n} q_k^i \left(\sum_{t} \beta_t^k h_t(x_i) - y_i \right)^2
\]

Evaluation cost

\[
\sum_{t=1}^{T} e_t \sqrt{\sum_{k=1}^{K} (\beta_t^k d_k)^2}
\]

Feature cost

\[
\sum_{\alpha=1}^{d} c_{\alpha} \sqrt{\sum_{k=1}^{K} \sum_{t=1}^{T} (F_{\alpha t} \beta_t^k d_k)^2}
\]
Cronus: Cyclic Optimization

- Initialization:

 1

 X_1

 β^1, θ_1

 early exit

 2

 X_2

 β^2, θ_2

 early exit

 \ldots

 K

 X_K

 β^K, θ_K

 early exit

 similar to the single stage formulation

 jointly convex and closed form update
Single Stage Sparse Solution

\[
\min_{\beta, \sigma, \gamma} \frac{1}{2n} (H\beta - Y)^2 + \frac{1}{2} \left[\beta^\top \Sigma \beta + \sum_t (\lambda e_t + \rho) \sigma_t \right] + \frac{1}{2} \left[\beta^\top \Gamma \beta + \sum_\alpha \lambda c_\alpha \eta_\alpha \right]
\]

Loss\hspace{1cm}Evaluation cost + Reg.\hspace{1cm}Feature cost

Jointly convex

\[\sigma^* = \sqrt{g(\beta)}\]

Fast training: 5,000 weak classifiers, 150,000 inputs, 13 seconds
Cronus: Cyclic Optimization

- Re-optimization:

\[
\begin{align*}
X_1 & \xrightarrow{\beta^1, \theta_1} X_2 \\
X_2 & \xrightarrow{\beta^2, \theta_2} \cdots \\
X_K & \xrightarrow{\beta^K, \theta_K}
\end{align*}
\]
Cronus: Cyclic Optimization

- Re-optimization:

1. X_1, β^1, θ_1
2. X_2, β^2, θ_2
3. X_K, β^K, θ_K

early exit

Minmin Chen, Zhixiang (Eddie) Xu, Kilian Weinberger, Olivier Chapelle, Dor Kedem

Classifier Cascade for Minimizing Feature Evaluation Cost
Cronus: Cyclic Optimization

- Re-optimization:

1. \(X_1 \) with \(\beta^1, \theta_1 \)
2. \(X_2 \) with \(\beta^2, \theta_2 \)
 - Early exit
3. \(X_K \) with \(\beta^K, \theta_K \)
 - Early exit
Experimental Results

700 features \((c = 1 \sim 200)\)
5,000 weak classifiers \((e = 1)\)
n\(\text{Tr} = 141,597\) \(n\text{Te} = 146,769\)

Precision@5 = \(\frac{\text{relevant documents in top 5 returns}}{5}\)

\(\text{Test cost} \times 10^4\)

- **Early.exit**
 - \(s = 1.0, s = 0.6, s = 0.2\)
 - [Cambazoglu et al., 2010]

- **GBRT**
 - [Friedman et al., 2001]

- **AND-OR**
 - [Dundar et al., 2007]

- **Soft cascade**
 - [Raykar et al., 2010]

Minmin Chen, Zhixiang (Eddie) Xu, Kilian Weinberger, Olivier Chapelle, Dor Kedem

Classifier Cascade for Minimizing Feature Evaluation Cost
Experimental Results

- Early stages use primarily cheap features;
- Expensive features are gradually extracted;
- A few expensive features are used in the early stages;
- Re-optimization rejects data points more aggressively.
Conclusion

- **Cronus, cyclic optimization to post-process classifiers**
 - effectively trades off prediction accuracy and runtime cost
 - globally optimizes the order of feature extraction and classifiers
 - stage-wise closed form updates
Cronus, cyclic optimization to post-process classifiers

- effectively trades off prediction accuracy and runtime cost
- globally optimizes the order of feature extraction
- stage-wise closed form updates

Conclusion
Conclusion

- **Cronus, cyclic optimization to post-process classifiers**
 - effectively trades off prediction accuracy and runtime cost
 - globally optimizes the order of feature extraction and classifiers
 - stage-wise closed form updates
Conclusion

- **Cronus, cyclic optimization to post-process classifiers**
 - effectively trades off prediction accuracy and runtime cost
 - globally optimizes the order of feature extraction and classifiers
 - **stage-wise closed form updates**

 jointly convex

 closed form solution at each iteration
Thank you!
Questions?