Current Issues in ATM Forum Traffic Management Group

Raj Jain

Raj Jain is now at Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- Effect of VS/VD
- GFR
- Virtual Paths
- ITU vs ATMF
- CDV Accumulation
- CLR with EPD
Overview (Cont)

- Joint Work with other Groups
 - TM and Net Mgmt
 - ABR API
 - TM and RBB
 - TM and SAA
 - TM and Test
Virtual Source / Virtual Destination (VS / VD)

- Segments the end-to-end ABR control loop.
- Coupling between loops is implementation specific.
- VS/VD can help in buffer management across the network.
- ABR switches separated by non-ATM network could also implement VS/VD.
A Simple VS/VD Model

- Internal Service Rate = f(External/Downstream Feedback, Local congestion)
- Local Congestion = f(Q_i); Q_i = q_i + Σ q_{ij}
- Upstream feedback = Internal service rate
- Example: Downstream = 100 Mbps, Internal = 90 Mbps = Upstream Feedback
Simple VS/VD Model

- Desired input rate to class queue is also fed back to the upstream switch.

- **Problem:**
 - Transient per-VC queues cannot drain. Input rate $s_{ij} = \text{Output rate } r_{ij}$
 - Queues that build up during open loop phase do not drain.
Correct VS/VD Model

- Internal Service Rate = f(External/Downstream Feedback, Switch algorithm using q_i)
- $ACR_{ij} = f($Internal service rate, end system rules$)$
- Upstream feedback = $f(q_{ij})ACR_{ij}$
- Example: Downstream = 100, Service = 90, ACR = 80, Upstream feedback = 70 Mbps
Per-VC ERICA+

- BRM received:
 - $ER_{ij}^{\text{external}} := ER$ in RM cell

- FRM received:
 - ER in RM := $ER_{ij}^{\text{feedback}}$

- At the end of each averaging interval:
 - $ER_{ij}^{\text{internal}}$
 := $\text{Min}\{\text{Max} \left(r_{ij} / \text{Overload}, g(q_i) R_i / N \right), ER_{ij}^{\text{external}}\}$
 - Output rate
 $ACR_{ij} = r_{ij} := \text{fn}\{ER_{ij}^{\text{internal}}, \text{end system rules}\}$
 - $ER_{ij}^{\text{feedback}} := g(q_{ij}) r_{ij}$
VSVD Results

- VS/VD switch architecture:
 - Per-VC queues drain at an ACR based only on the external congestion and class Q.
 - Feedback to upstream queue must include external congestion, class Q, and per-VC Q.
 - Each queue must monitor its input and output rate.

- Action (Feb’98): Added a sample VS/VD scheme to baseline text.
Results (Cont)

- With correct implementation of VS/VD:
 Maximum queue at each switch ≤ Bandwidth delay product of the previous loop ⇒ Can help isolate long-delay hops from short-delay hops.

- Workgroup switches on satellite paths will not need buffering proportional to round-trip even if they are the bottleneck.
VS/VD: Other Issues

- Effect on ABR parameters
- Ref: 96-1639
GFR

- Status of Feb’98 Meeting
- Signaling Parameter for GFR
 - PCR_{0+1}
 - MCR_0
 - MBS
 - $\text{MFS} = \text{Min}\{\text{CPCS PDU Size, MBS}\}$
 - Tagging
 - Best Effort
- Attempt to replace GFR with VBR.4 failed
- Attempt to include flow charts for conformance was tabled.
Virtual Paths

- VC to VP Aggregation
- EFCI State
VC to VP Aggregation

- VP = Σ VCs
- VP Traffic contract ≠ Σ VC traffic contracts
- QoS of VP = QoS of most demanding VC?
- An appendix has been added to TM5.0 describing the problem (Feb’98). No known general solution.
- Ref: 97-0714, 97-0624, 97-0168R2, 95-1519
VP sources should not reset EFCI

Solution 1: Use VS/VD at VP ends

Solution 2: Only reflect EFCI at VP source. Not full VD.

Ref: 97-0386
ITU vs ATMF

- ATMF vs ITU Classes
- QoS Parameters
ATMF VBR Definitions

- **VBR.1** ⇒ Non-conforming cells are discarded
- **VBR.2** ⇒ CLP=0 that overflow SCR bucket are dropped, CLP=1 that pass PCR bucket are eligible
- **VBR.3** ⇒ CLP=0 that overflow SCR bucket are tagged and then eligible for best effort service
ITU QoS Classes

- High priority cell vs aggregate stream
 \(\text{CLR}_0 \) vs \(\text{CLR}_{0+1} \)
- I.356 applies only to public networks
 - Class 1: Delay & \(\text{CLR}_{0+1} \)
 - Class 2: \(\text{CLR}_{0+1} \)
 - Class 3: \(\text{CLR}_0 \)
 - Unspecified Class
ATMF vs ITU Classes

- Five Service Categories vs four QoS Classes
- CBR = Class 1
- rt-VBR.1 = Class 1
- rt-VBR.2 = ?
- rt-VBR.3 = ?
- nrt-VBR.1 = 2
- nrt-VBR.2 = 3
- nrt-VBR.3 = 3
- ABR = 3, U
- UBR = U
QoS Parameters

- ATM Forum uses maxCTD and peak-to-peak CDV
- ITU uses meanCTD and 2-pt CDV
- MaxCTD $= \text{CTD}_{1-\alpha}$
- MeanCTD $= \frac{1}{n} \sum \text{CTD}$
- Peak-to-peak CDV $= \text{CTD}_{1-\alpha} - \text{CTD}_{\text{fixed}}$
- 2-pt CDV $= \text{CTD}_{1-\alpha/2} - \text{CTD}_{\alpha/2}$
- Ref: 97-0895, 97-0290, 97-0562, 97-0427, 97-0404, 96-0369
CDV Accumulation

- TM4.0 uses Mean, variance, discrepancy
- Discrepancy = Measured CDV(\(\alpha\)) - CDV(\(\alpha\)) from Gaussian distribution
Worst case \Rightarrow Overestimate
\Rightarrow Underutilization, Blocking

Suggest using Chernoff method or Markovian Inequality

Assumes local delays at switches are independent.

Assumes delays at each switch are gamma distributed.
Switch Delay pdf: $f(t) = \frac{\lambda^r t^{r-1} e^{-\lambda t}}{\Gamma(r)}$
$\lambda = $ scale parameter of the switch delay
$r = $ shape parameter of the switch delay
CDV Algorithm

- \(s_i = \min_{1<j\leq i} \frac{\lambda_j}{c}, \; c>1 \)
- If \(s_i \) is less than requested end-to-end CDV, accumulate \(r_i \log(\frac{\lambda_i}{(\lambda_i-s_i)}) \)
- How do you select \(c \)? Need more guidance.
- Ref: 97-0293
CLR with EPD

- Cells dropped due to EPD be not counted in CLR
Joint Work with Other Groups

- TM and Net Mgmt
- ABR API
- TM and RBB
- TM and SAA
- TM and Test
Management of ABR Service

Count invalid RM cells, valid RM cells

Invalid: BN=1 and DIR=0, ER>PCR, ...

Ref: 97-0478R2

Traffic Descriptors for CBR, VBR, ABR, UBR

CBR Traffic Descriptor: PCR, SCR, MBS, CDVT, p-to-p CDV, max CTD CLR

Ref: 97-0923

Accumulative Parameters: FRTT, maxCTD, peak-to-peak CDV
ABR API

- Query and Set: PCR, MCR, ICR, RIF, RDF, MCRmin
- Query: FRTT, TBE
- Set: ER (<PCR), MCR
- Query: ACR
- Ref: 97-0999*, 97-1020*, 97-1100*
Querying ACR

- When should the applications be notified of ACR change?
- Suggestion: two threshold crossing
- Ref: 97-1020*

```
0  MCR  ACR_{lo}  ACR_{hi}  PCR

0  MCR

ACR_{lo}

0  MCR

ACR_{lo}  ACR_{hi}
```

Notify only if invalid

Notify if service down or up
TM and RBB

- RBB: Shared access over cable, asymmetric links
- Simplification of traffic parameters for residential users
- Effect of dual delays in cable modems
- Ref: 97-1081
VBR Video

- Given mean, PCR of a video stream, how does one request SCR, MBS, ...
- Effective BW = (1-\(\alpha\))Mean + \(\alpha\) PCR
- Higher Effective BW \(\Rightarrow\) Lower MBS
- Ref: 97-0756*, 97-0733, 97-0797
- Service Category for Video: CBR, VBR, ABR, ABT
Effect of VS/VD: Buffers = previous hop
GFR: Signaling parameters.
Virtual Paths: Not easy to compute QoS
ITU classes vs ATMF service categories
CDV Accumulation: Chernoff Inequality
Future Issues

- ABR Policing
- Multipoint
- ABR Fairness and Pricing
- Effective Number of Active Sources
- Varying Phy Bandwidth
- TCP/IP over ATM
- FUNI Conformance